翻訳と辞書
Words near each other
・ Galt Island
・ Galt Island (Florida)
・ Galt Island Archeological District
・ Galt Joint Union Elementary School District
・ Galt MacDermot
・ Galt Museum & Archives
・ Galt Niederhoffer
・ Galo tribe
・ Galo Vásquez
・ Galo, Central African Republic
・ Galoa Island
・ Galogalo River
・ Galois (crater)
・ Galois cohomology
・ Galois connection
Galois extension
・ Galois geometry
・ Galois group
・ Galois module
・ Galois theory
・ Galois/Counter Mode
・ Galole
・ Galole Constituency
・ Galoli language
・ Galomaro
・ Galomecalpa
・ Galomecalpa concolor
・ Galomecalpa defricata
・ Galomecalpa empirica
・ Galomecalpa hydrochoa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Galois extension : ウィキペディア英語版
Galois extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ''F''. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. 〔 See the article Galois group for definitions of some of these terms and some examples.〕
A result of Emil Artin allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension.
==Characterization of Galois extensions==
An important theorem of Emil Artin states that for a finite extension ''E''/''F'', each of the following statements is equivalent to the statement that ''E''/''F'' is Galois:
* ''E''/''F'' is a normal extension and a separable extension.
* ''E'' is a splitting field of a separable polynomial with coefficients in ''F''.
* |Aut(''E''/''F'')| = (), that is, the number of automorphisms equals the degree of the extension.
Other equivalent statements are:
* Every irreducible polynomial in ''F''() with at least one root in ''E'' splits over ''E'' and is separable.
* |Aut(''E''/''F'')| ≥ (), that is, the number of automorphisms is at least the degree of the extension.
* ''F'' is the fixed field of a subgroup of Aut(''E'').
* ''F'' is the fixed field of Aut(''E''/''F'').
* There is a one-to-one correspondence between subfields of ''E''/''F'' and subgroups of Aut(''E''/''F'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Galois extension」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.